Approximation by uniform domains in doubling quasiconvex metric spaces
نویسندگان
چکیده
Abstract We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.
منابع مشابه
Approximation of Metric Spaces by Partial Metric Spaces
Partial metrics are generalised metrics with non-zero self-distances. We slightly generalise Matthews' original definition of partial metrics, yielding a notion of weak partial metric. After considering weak partial metric spaces in general, we introduce a weak partial metric on the poset of formal balls of a metric space. This weak partial metric can be used to construct the completion of clas...
متن کاملDistributed Spanner Construction in Doubling Metric Spaces
This paper presents a distributed algorithm that runs on an n-node unit ball graph (UBG) G residing in a metric space of constant doubling dimension, and constructs, for any ε > 0, a (1 + ε)-spanner H of G with maximum degree bounded above by a constant. In addition, we show that H is “lightweight”, in the following sense. Let ∆ denote the aspect ratio of G, that is, the ratio of the length of ...
متن کاملFast Approximation in Subspaces by Doubling Metric Decomposition
In this paper we propose and study a new complexity model for approximation algorithms. The main motivation are practical problems over large data sets that need to be solved many times for different scenarios, e.g., many multicast trees that need to be constructed for different groups of users. In our model we allow a preprocessing phase, when some information of the input graph G = (V,E) is s...
متن کاملApproximation of endpoints for multi-valued mappings in metric spaces
In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.
متن کاملBest Approximation in Metric Spaces
A metric space (X, d) is called an M-space if for every x and y in X and for every r 6 [0, A] we have B[x, r] Cl B[y, A — r] = {2} for some z € X, where A = d(x, y). It is the object of this paper to study M-spaces in terms of proximinality properties of certain sets. 0. Introduction. Let (X, d) be a metric space, and G be a closed subset of X. For x E X, let p(x,G) = inf{d(x, y) : y E G}. If t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex analysis and its synergies
سال: 2021
ISSN: ['2197-120X', '2524-7581']
DOI: https://doi.org/10.1007/s40627-021-00062-3